1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
| | @include _ext.texi
@node Getting Started
@chapter Getting Started
Welcome to the O programming language! This chapter will introduce you to the
basics of the language's syntax. We'll cover variables, data types, operators,
control flow, and functions.
By the end of this chapter, you'll have a solid foundation in the O language
syntax and be ready to start writing your own programs. If you are already
familiar with C-like languages, you will find out that @code{O} behave pretty
much the same with some small quirks. Let's dive in!
@section An olang program
An O programming language program starts with a @code{main} function. This
function must return the program exit code.
@sethl olang
@verbatim
fn main(): u8 {
return 0
}
@end verbatim
To compile the program you can use @code{olc}.
@sethl- bash
@verbatim
olc my_prog.ol -o my_prog
./my_prog
@end verbatim
@section Functions
Unlike C, O language does not require function prototypes. This means you can
call a function before it's defined, making your code more flexible and easier
to read in many cases.
@sethl olang
@verbatim
fn main(): u8 {
return fib(8)
}
fn add(a: u32, b: u32): u32 {
return a + b
}
fn fib(n: u32): u32 {
if n <= 2 {
return n
}
return add(fib(n - 1), fib(n - 2))
}
@end verbatim
@section Comments
Comments starts with a @code{#}.
@sethl- olang
@verbatim
# Hi I'm a comment and I'll be ignored by the compiler.
@end verbatim
@section Variables
@sethl- olang
@verbatim
var answer: u32 = 42
@end verbatim
@section Flow control
Any non zero expr is true.
@subsection If-Else
@sethl olang
@verbatim
if expr {
# statement
} else if expr {
# statement
} else {
# statement
}
@end verbatim
While loop
@sethl olang
@verbatim
while expr {
# statement
}
@end verbatim
@subsection While loop
@sethl olang
@verbatim
while expr {
# statement
}
@end verbatim
@section Primitive data types
@table @samp
@item u8
Unsigned 8 bits.
@item u16
Unsigned 16 bits.
@item u32
Unsigned 32 bits.
@item u64
Unsigned 64 bits.
@end table
@section Binary Operations
@subsection Logical
@table @samp
@item Equals
@sethl- olang
@verbatim
expr1 == expr2
@end verbatim
Results zero (false) or one (true).
@item Less
@sethl- olang
@verbatim
expr1 < expr2
@end verbatim
Results zero (false) or one (true).
@item Less Equal
@sethl- olang
@verbatim
expr1 <= expr2
@end verbatim
Results zero (false) or one (true).
@item Greater
@sethl- olang
@verbatim
expr1 > expr2
@end verbatim
Results zero (false) or one (true).
@item Greater Equal
@sethl- olang
@verbatim
expr1 >= expr2
@end verbatim
Results zero (false) or one (true).
@item Or
@sethl- olang
@verbatim
expr1 || expr2
@end verbatim
Results zero (false) if both are true or one (true) if any is true.
@item And
@sethl- olang
@verbatim
expr1 && expr2
@end verbatim
Results zero (false) if any is false or one (true) if both are true.
@end table
@subsection Bitwise
@table @samp
@item Shift left
@sethl- olang
@verbatim
n << bits
@end verbatim
@item Shift left
@sethl- olang
@verbatim
n >> bits
@end verbatim
@item And
@sethl- olang
@verbatim
n & bits
@end verbatim
@item Or
@sethl- olang
@verbatim
n | bits
@end verbatim
@end table
@subsection Arithmetic
@table @samp
@item Addition
@sethl- olang
@verbatim
expr1 + expr2
@end verbatim
@item Subtraction
@sethl- olang
@verbatim
expr1 - expr2
@end verbatim
@item Multiplication
@sethl- olang
@verbatim
expr1 * expr2
@end verbatim
@item Division
@sethl- olang
@verbatim
expr1 / expr2
@end verbatim
@item Remaining
@sethl- olang
@verbatim
expr1 % expr2
@end verbatim
@end table
@section Pointers
Dealing with memory address.
@subsection Address of (&)
Get the address of a variable.
@sethl olang
@verbatim
var my_var: u32 = 0
var my_pointer: u32* = &my_var
@end verbatim
@subsection Dereferencing (*)
Accessing the value of the address a pointer points to.
@sethl olang
@verbatim
var my_var: u32 = 0
# The result of *my_pointer is the value of my_var (0).
*my_pointer
*my_pointer = 42
@end verbatim
The program above sets the @code{my_var}'s to 42.
|