/* * Copyright (C) 2024 olang maintainers * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "codegen_x86_64.h" #include "list.h" #include "map.h" #include "scope.h" #define SYS_exit (60) #define PTR_HEX_CSTR_SIZE (16 + 1) // The call instruction pushes EIP into stack so the first 8 bytes from stack // must be preserved else the ret instruction will jump to nowere. #define X86_CALL_ARG_SIZE 6 #define bytes_max(a, b) ((a) > (b) ? (a) : (b)) typedef enum x86_64_register_type { REG_ACCUMULATOR, REG_BASE, REG_COUNTER, REG_DATA, REG_SRC_IDX, REG_DEST_IDX, REG_STACK_PTR, REG_BASE_PTR, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15 } x86_64_register_type_t; /** * Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7 Notes * ────────────────────────────────────────────────────────────── * x86-64 rdi rsi rdx r10 r8 r9 - */ static int x86_call_args[X86_CALL_ARG_SIZE] = { REG_DEST_IDX, REG_SRC_IDX, REG_DATA, REG_R10, REG_R8, REG_R9 }; static void codegen_x86_64_emit_function(codegen_x86_64_t *codegen, ast_fn_definition_t *fn); static void codegen_x86_64_emit_if(codegen_x86_64_t *codegen, ast_if_stmt_t is_stmt); static void codegen_x86_64_put_stack_offset(codegen_x86_64_t *codegen, symbol_t *symbol, size_t offset); static size_t codegen_x86_64_get_stack_offset(codegen_x86_64_t *codegen, symbol_t *symbol); static size_t type_to_bytes(type_t *type); static char * get_reg_for(x86_64_register_type_t type, size_t bytes); void codegen_x86_64_init(codegen_x86_64_t *codegen, arena_t *arena, FILE *out) { assert(codegen); assert(arena); assert(codegen); codegen->base_offset = 0; codegen->symbols_stack_offset = map_new(arena); codegen->out = out; codegen->arena = arena; } void codegen_x86_64_emit_translation_unit(codegen_x86_64_t *codegen, ast_node_t *node) { codegen->label_index = 0; fprintf(codegen->out, ".text\n"); assert(node->kind == AST_NODE_TRANSLATION_UNIT); ast_translation_unit_t translation_unit = node->as_translation_unit; list_item_t *item = list_head(translation_unit.decls); while (item != NULL) { ast_node_t *decl = (ast_node_t *)item->value; if (decl->kind == AST_NODE_FN_DEF) { ast_fn_definition_t fn = decl->as_fn_def; codegen_x86_64_emit_function(codegen, &fn); } else { assert(0 && "translation unit only supports function declarations"); } item = list_next(item); } } static size_t codegen_x86_64_get_next_label(codegen_x86_64_t *codegen) { return ++codegen->label_index; } typedef size_t size_in_bytes_t; static size_in_bytes_t codegen_x86_64_emit_expression(codegen_x86_64_t *codegen, ast_node_t *expr_node) { switch (expr_node->kind) { case AST_NODE_LITERAL: { ast_literal_t literal_u32 = expr_node->as_literal; assert(literal_u32.kind == AST_LITERAL_U32); uint32_t n = literal_u32.as_u32; fprintf(codegen->out, " mov $%d, %%eax\n", n); return 4; } case AST_NODE_REF: { ast_ref_t ref = expr_node->as_ref; size_t offset = codegen_x86_64_get_stack_offset(codegen, ref.ident.symbol); size_t bytes = type_to_bytes(ref.ident.symbol->type); fprintf(codegen->out, " mov -%ld(%%rbp), %s\n", offset, get_reg_for(REG_ACCUMULATOR, bytes)); return bytes; } case AST_NODE_FN_CALL: { ast_fn_call_t fn_call = expr_node->as_fn_call; symbol_t *symbol = scope_lookup(fn_call.scope, fn_call.id); assert(symbol); size_t i = 0; for (list_item_t *item = list_head(fn_call.args); item != NULL; item = list_next(item)) { // FIXME: add support for more args than X86_CALL_ARG_SIZE assert(i < X86_CALL_ARG_SIZE); ast_node_t *arg_node = (ast_node_t *)item->value; codegen_x86_64_emit_expression(codegen, arg_node); fprintf(codegen->out, " push %s\n", get_reg_for(REG_ACCUMULATOR, 8)); ++i; } for (; i > 0; --i) { fprintf(codegen->out, " pop %s\n", get_reg_for(x86_call_args[i - 1], 8)); } fprintf(codegen->out, " call " SV_FMT "\n", SV_ARG(fn_call.id)); return type_to_bytes(symbol->type); } case AST_NODE_BINARY_OP: { ast_binary_op_t bin_op = expr_node->as_bin_op; switch (bin_op.kind) { case AST_BINOP_ADDITION: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " add %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_MULTIPLICATION: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " mul %s\n", get_reg_for(REG_COUNTER, expr_bytes)); return expr_bytes; } case AST_BINOP_DIVISION: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " xor %%rdx, %%rdx\n"); fprintf(codegen->out, " div %s\n", get_reg_for(REG_COUNTER, expr_bytes)); return expr_bytes; } case AST_BINOP_REMINDER: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " xor %%rdx, %%rdx\n"); fprintf(codegen->out, " div %s\n", get_reg_for(REG_COUNTER, expr_bytes)); fprintf(codegen->out, " mov %s, %s\n", get_reg_for(REG_DATA, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_SUBTRACTION: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " sub %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_EQ: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " sete %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_LT: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " setl %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_GT: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " setg %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_NEQ: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " setne %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_LEQ: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " setle %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_CMP_GEQ: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " cmp %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); fprintf(codegen->out, " setge %%al\n"); fprintf(codegen->out, " movzb %%al, %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_BITWISE_LSHIFT: { fprintf(codegen->out, " xor %%rax, %%rax\n"); codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " shl %%cl, %s\n", get_reg_for(REG_ACCUMULATOR, lhs_bytes)); return lhs_bytes; } case AST_BINOP_BITWISE_RSHIFT: { fprintf(codegen->out, " xor %%rax, %%rax\n"); codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " shr %%cl, %s\n", get_reg_for(REG_ACCUMULATOR, lhs_bytes)); return lhs_bytes; } case AST_BINOP_BITWISE_XOR: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " xor %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_BITWISE_AND: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " and %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_BITWISE_OR: { fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " push %%rax\n"); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); size_in_bytes_t expr_bytes = bytes_max(rhs_bytes, lhs_bytes); fprintf(codegen->out, " pop %%rcx\n"); fprintf(codegen->out, " or %s, %s\n", get_reg_for(REG_COUNTER, expr_bytes), get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_BINOP_LOGICAL_AND: { size_t label_exit = codegen_x86_64_get_next_label(codegen); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); fprintf(codegen->out, " cmp $0, %s\n", get_reg_for(REG_ACCUMULATOR, lhs_bytes)); fprintf(codegen->out, " je .L%ld\n", label_exit); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " cmp $0, %s\n", get_reg_for(REG_ACCUMULATOR, rhs_bytes)); fprintf(codegen->out, " je .L%ld\n", label_exit); fprintf(codegen->out, " mov $1, %%rax\n"); fprintf(codegen->out, ".L%ld:\n", label_exit); return 1; } case AST_BINOP_LOGICAL_OR: { size_t label_t = codegen_x86_64_get_next_label(codegen); size_t label_f = codegen_x86_64_get_next_label(codegen); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t lhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.lhs); fprintf(codegen->out, " cmp $0, %s\n", get_reg_for(REG_ACCUMULATOR, lhs_bytes)); fprintf(codegen->out, " jne .L%ld\n", label_t); fprintf(codegen->out, " xor %%rax, %%rax\n"); size_in_bytes_t rhs_bytes = codegen_x86_64_emit_expression(codegen, bin_op.rhs); fprintf(codegen->out, " cmp $0, %s\n", get_reg_for(REG_ACCUMULATOR, rhs_bytes)); fprintf(codegen->out, " je .L%ld\n", label_f); fprintf(codegen->out, ".L%ld:\n", label_t); fprintf(codegen->out, " mov $1, %%rax\n"); fprintf(codegen->out, ".L%ld:\n", label_f); return 1; } case AST_BINOP_ASSIGN: { switch (bin_op.lhs->kind) { case AST_NODE_REF: { ast_ref_t ref = bin_op.lhs->as_ref; size_t offset = codegen_x86_64_get_stack_offset( codegen, ref.ident.symbol); codegen_x86_64_emit_expression(codegen, bin_op.rhs); size_t type_size = type_to_bytes(ref.ident.symbol->type); fprintf(codegen->out, " mov %s, -%ld(%%rbp)\n", get_reg_for(REG_ACCUMULATOR, type_size), offset); break; } case AST_NODE_UNARY_OP: { assert(bin_op.lhs->as_unary_op.kind == AST_UNARY_DEREFERENCE && "unsupported assignment lhs"); codegen_x86_64_emit_expression(codegen, bin_op.lhs); fprintf(codegen->out, " push %%rax\n"); size_t type_size = codegen_x86_64_emit_expression( codegen, bin_op.rhs); fprintf(codegen->out, " pop %%rdx\n"); fprintf(codegen->out, " mov %s, (%%rdx) \n", get_reg_for(REG_ACCUMULATOR, type_size)); break; } default: { assert(false && "unsupported assignment lhs"); } } // FIXME: we don't support a = b = c return 0; } default: { assert(0 && "unsupported binary operation"); return 0; } } } case AST_NODE_UNARY_OP: { ast_unary_op_t unary_op = expr_node->as_unary_op; switch (unary_op.kind) { case AST_UNARY_BITWISE_NOT: { size_in_bytes_t expr_bytes = codegen_x86_64_emit_expression( codegen, unary_op.operand); fprintf(codegen->out, " not %s\n", get_reg_for(REG_ACCUMULATOR, expr_bytes)); return expr_bytes; } case AST_UNARY_ADDRESSOF: { assert(unary_op.operand->kind == AST_NODE_REF && "unsupported unary expression for addressof (&)"); ast_ref_t ref = unary_op.operand->as_ref; size_t offset = codegen_x86_64_get_stack_offset( codegen, ref.ident.symbol); fprintf( codegen->out, " lea -%ld(%%rbp), %%rax\n", offset); return 8; } case AST_UNARY_DEREFERENCE: { // FIXME: support dereference of dereference (**) assert(unary_op.operand->kind == AST_NODE_REF && "unsupported unary expression for dereference (*)"); return codegen_x86_64_emit_expression(codegen, unary_op.operand); } default: { assert(0 && "unsupported unary operation"); return 0; } } } default: assert(0 && "unsupported expression"); } } static void codegen_x86_64_emit_block(codegen_x86_64_t *codegen, ast_block_t *block) { size_t block_offset = codegen->base_offset; size_t nodes_len = list_size(block->nodes); for (size_t i = 0; i < nodes_len; ++i) { ast_node_t *node = list_get(block->nodes, i)->value; switch (node->kind) { case AST_NODE_RETURN_STMT: { ast_return_stmt_t return_stmt = node->as_return_stmt; ast_node_t *value = return_stmt.value; codegen_x86_64_emit_expression(codegen, value); fprintf(codegen->out, " mov %%rbp, %%rsp\n"); fprintf(codegen->out, " pop %%rbp\n"); fprintf(codegen->out, " ret\n"); break; } case AST_NODE_VAR_DEF: { ast_var_definition_t var_def = node->as_var_def; size_t type_size = type_to_bytes(var_def.ident.symbol->type); codegen->base_offset += type_size; codegen_x86_64_put_stack_offset( codegen, var_def.ident.symbol, codegen->base_offset); if (var_def.value) { codegen_x86_64_emit_expression(codegen, var_def.value); } fprintf(codegen->out, " mov %s, -%ld(%%rbp)\n", get_reg_for(REG_ACCUMULATOR, type_size), codegen->base_offset); break; } case AST_NODE_BINARY_OP: case AST_NODE_FN_CALL: { codegen_x86_64_emit_expression(codegen, node); break; } case AST_NODE_IF_STMT: { codegen_x86_64_emit_if(codegen, node->as_if_stmt); break; } case AST_NODE_WHILE_STMT: { ast_while_stmt_t while_stmt = node->as_while_stmt; ast_node_t *cond = while_stmt.cond; ast_node_t *then = while_stmt.then; size_t begin_label = codegen_x86_64_get_next_label(codegen); size_t end_label = codegen_x86_64_get_next_label(codegen); fprintf(codegen->out, ".L%ld:\n", begin_label); codegen_x86_64_emit_expression(codegen, cond); fprintf(codegen->out, " cmp $1, %%rax\n"); fprintf(codegen->out, " jnz .L%ld\n", end_label); assert(then->kind == AST_NODE_BLOCK && "invalid while-then block"); ast_block_t then_block = then->as_block; codegen_x86_64_emit_block(codegen, &then_block); fprintf(codegen->out, " jmp .L%ld\n", begin_label); fprintf(codegen->out, ".L%ld:\n", end_label); break; } default: { // FIXME: improve error: replace the node->kind to a string // representation fprintf(stderr, "node kind %d not supported\n", node->kind); assert(0 && "unsupported block statement"); break; } } } codegen->base_offset = block_offset; } static void codegen_x86_64_emit_if(codegen_x86_64_t *codegen, ast_if_stmt_t if_stmt) { ast_node_t *cond = if_stmt.cond; ast_node_t *then = if_stmt.then; ast_node_t *_else = if_stmt._else; size_t end_if_label = codegen_x86_64_get_next_label(codegen); size_t end_else_label = codegen_x86_64_get_next_label(codegen); codegen_x86_64_emit_expression(codegen, cond); fprintf(codegen->out, " cmp $1, %%rax\n"); fprintf(codegen->out, " jnz .L%ld\n", end_if_label); assert(then->kind == AST_NODE_BLOCK && "invalid if-then block"); ast_block_t then_block = then->as_block; codegen_x86_64_emit_block(codegen, &then_block); fprintf(codegen->out, " jmp .L%ld\n", end_else_label); fprintf(codegen->out, ".L%ld:\n", end_if_label); if (_else != NULL) { if (_else->kind == AST_NODE_IF_STMT) { ast_if_stmt_t else_if = _else->as_if_stmt; codegen_x86_64_emit_if(codegen, else_if); } else { ast_block_t else_block = _else->as_block; codegen_x86_64_emit_block(codegen, &else_block); } } fprintf(codegen->out, ".L%ld:\n", end_else_label); } static size_t type_to_bytes(type_t *type) { switch (type->kind) { case TYPE_PRIMITIVE: { return type->as_primitive.size; } case TYPE_PTR: { return 8; } case TYPE_UNKNOWN: { assert(0 && "cannot calculate size of an unknown type: probably a " "parser issue."); } } assert(0 && "unreachable"); } static size_t calculate_fn_local_size(scope_t *scope) { assert(scope); // The local_size starts with 8 bytes since the first 8 bytes from the // stack are reserved to store RBP during the prelude size_t local_size = 8; map_kv_t *kvs[scope->symbols->size]; map_get_kvs(scope->symbols, kvs); for (size_t i = 0; i < scope->symbols->size; ++i) { symbol_t *symbol = (symbol_t *)kvs[i]->value; local_size += type_to_bytes(symbol->type); } size_t max_child_local_size = 0; list_item_t *item = list_head(scope->children); while (item != NULL) { size_t child_local_size = calculate_fn_local_size((scope_t *)item->value); if (child_local_size > max_child_local_size) { max_child_local_size = child_local_size; } item = list_next(item); } return local_size + max_child_local_size; } static void codegen_x86_64_emit_function(codegen_x86_64_t *codegen, ast_fn_definition_t *fn_def) { if (fn_def->_extern) { return; } fprintf(codegen->out, ".globl " SV_FMT "\n", SV_ARG(fn_def->id)); codegen->base_offset = 0; ast_node_t *block_node = fn_def->block; fprintf(codegen->out, "" SV_FMT ":\n", SV_ARG(fn_def->id)); fprintf(codegen->out, " push %%rbp\n"); fprintf(codegen->out, " mov %%rsp, %%rbp\n"); size_t i = 0; for (list_item_t *item = list_head(fn_def->params); item != NULL; item = list_next(item)) { assert(i < X86_CALL_ARG_SIZE); ast_fn_param_t *param = item->value; symbol_t *symbol = scope_lookup(fn_def->scope, param->id); assert(symbol); // FIXME: add offset according to the param size codegen->base_offset += 8; size_t offset = codegen->base_offset; codegen_x86_64_put_stack_offset(codegen, symbol, codegen->base_offset); fprintf(codegen->out, " mov %s, -%ld(%%rbp)\n", // FIXME: Type may not be an as_primitive get_reg_for(x86_call_args[i], symbol->type->as_primitive.size), offset); ++i; } size_t local_size = calculate_fn_local_size(fn_def->scope); if (local_size != 0) { fprintf(codegen->out, " sub $%ld, %%rsp\n", local_size); } assert(block_node->kind == AST_NODE_BLOCK); ast_block_t block = block_node->as_block; codegen_x86_64_emit_block(codegen, &block); } static void codegen_x86_64_put_stack_offset(codegen_x86_64_t *codegen, symbol_t *symbol, size_t offset) { size_t *stack_offset = arena_alloc(codegen->arena, sizeof(size_t)); *stack_offset = offset; char symbol_ptr[PTR_HEX_CSTR_SIZE]; sprintf(symbol_ptr, "%lx", (uintptr_t)symbol); map_put(codegen->symbols_stack_offset, symbol_ptr, stack_offset); } static size_t codegen_x86_64_get_stack_offset(codegen_x86_64_t *codegen, symbol_t *symbol) { char symbol_ptr[PTR_HEX_CSTR_SIZE]; sprintf(symbol_ptr, "%lx", (uintptr_t)symbol); return *(size_t *)map_get(codegen->symbols_stack_offset, symbol_ptr); } static char * get_reg_for(x86_64_register_type_t type, size_t bytes) { switch (type) { case REG_ACCUMULATOR: { if (bytes <= 1) { return "%al"; } else if (bytes <= 2) { return "%ax"; } else if (bytes <= 4) { return "%eax"; } return "%rax"; } case REG_BASE: { if (bytes <= 1) { return "%bl"; } else if (bytes <= 2) { return "%bx"; } else if (bytes <= 4) { return "%ebx"; } return "%rbx"; } case REG_COUNTER: { if (bytes <= 1) { return "%cl"; } else if (bytes <= 2) { return "%cx"; } else if (bytes <= 4) { return "%ecx"; } return "%rcx"; } case REG_DATA: { if (bytes <= 1) { return "%dl"; } else if (bytes <= 2) { return "%dx"; } else if (bytes <= 4) { return "%edx"; } return "%rdx"; } case REG_SRC_IDX: { if (bytes <= 1) { return "%sil"; } else if (bytes <= 2) { return "%si"; } else if (bytes <= 4) { return "%esi"; } return "%rsi"; } case REG_DEST_IDX: { if (bytes <= 1) { return "%sil"; } else if (bytes <= 2) { return "%di"; } else if (bytes <= 4) { return "%edi"; } return "%rdi"; } case REG_STACK_PTR: { if (bytes <= 1) { return "%spl"; } else if (bytes <= 2) { return "%sp"; } else if (bytes <= 4) { return "%esp"; } return "%rsp"; } case REG_BASE_PTR: { if (bytes <= 1) { return "%bpl"; } else if (bytes <= 2) { return "%bp"; } else if (bytes <= 4) { return "%ebp"; } return "%rbp"; } case REG_R8: { if (bytes <= 1) { return "%r8b"; } else if (bytes <= 2) { return "%r8w"; } else if (bytes <= 4) { return "%r8d"; } return "%r8"; } case REG_R9: { if (bytes <= 1) { return "%r9b"; } else if (bytes <= 2) { return "%r9w"; } else if (bytes <= 4) { return "%r9d"; } return "%r9"; } case REG_R10: { if (bytes <= 1) { return "%r10b"; } else if (bytes <= 2) { return "%r10w"; } else if (bytes <= 4) { return "%r10d"; } return "%r10"; } case REG_R11: { if (bytes <= 1) { return "%r11b"; } else if (bytes <= 2) { return "%r11w"; } else if (bytes <= 4) { return "%r11d"; } return "%r11"; } case REG_R12: { if (bytes <= 1) { return "%r12b"; } else if (bytes <= 2) { return "%r12w"; } else if (bytes <= 4) { return "%r12d"; } return "%r12"; } case REG_R13: { if (bytes <= 1) { return "%r13b"; } else if (bytes <= 2) { return "%r13w"; } else if (bytes <= 4) { return "%r13d"; } return "%r13"; } case REG_R14: { if (bytes <= 1) { return "%r14b"; } else if (bytes <= 2) { return "%r14w"; } else if (bytes <= 4) { return "%r14d"; } return "%r14"; } case REG_R15: { if (bytes <= 1) { return "%r15b"; } else if (bytes <= 2) { return "%r15w"; } else if (bytes <= 4) { return "%r15d"; } return "%r15"; } } assert(0 && "invalid register"); return NULL; }